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Abstract
We present SampleRank, an alternative to con-
trastive divergence (CD) for estimating param-
eters in complex graphical models. SampleR-
ank harnesses a user-provided loss function to
distribute stochastic gradients across an MCMC
chain. As a result, parameter updates can be
computed between arbitrary MCMC states. Sam-
pleRank is not only faster than CD, but also
achieves better accuracy in practice (up to 23%
error reduction on noun-phrase coreference).

1. Introduction
Templated factor graphs are a powerful framework for
modeling structured prediction problems such as coref-
erence and information integration. Unfortunately, tra-
ditional parameter estimation algorithms scale poorly in
these models because they rely on expensive inference pro-
cedures as subroutines: maximum likelihood requires the
#P-hard problem of computing marginals, and perceptron
requires the NP-hard problem of computing MPEs. Al-
though approximations exist, it has been shown that the use
of approximate inference during learning can often lead to
surprisingly poor parameter estimates (Kulesza & Pereira,
2007; Finley & Joachims, 2008). Additionally, many struc-
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tured prediction models of interest contain (1) a high num-
ber of interdependent variables, (2) variables with exponen-
tially large domains, and (3) tens-of-millions of parameters
(Culotta et al., 2007). These characteristics make even ap-
proximate message passing algorithms such as loopy belief
propagation intractable; thus, MCMC has become the sine
qua non for achieving practical inference in these models.

Contrastive divergence (CD) is a viable approach to param-
eter estimation with MCMC that has been successfully ap-
plied to both Markov random fields and deep belief net-
works (Hinton, 2002; Tieleman, 2008). CD computes in-
expensive gradients between the ground-truth and samples
along an MCMC chain yielding a stochastic approximation
algorithm with convergence guarantees. Unfortunately, CD
is known to be sensitive to the shape of the underlying prob-
ability distribution—making it difficult to apply in certain
situations—requiring the support of advanced MCMC pro-
cedures (Salakhutdinov, 2009).

Furthermore, contrastive divergence approximates maxi-
mum likelihood, which is not always the best choice for
structured prediction problems which are commonly as-
sessed with domain specific evaluation metrics such as F1
or BLEU score. In particular, recent work has articulated
the importance of incorporating these rich signals into the
learning objectives because they yield better performance
(Taskar et al., 2003; Sarawagi & Gupta, 2008; Joachims
et al., 2009; McAllester et al., 2010). Unfortunately, many
of these approaches depend on loss-augmented decoding,
which not only limits the class of evaluation metrics, but
also limits scalability to complex models.
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In this paper we present a stochastic learning algorithm,
SampleRank, for rapid parameter estimation in large graph-
ical models with rich evaluation metrics. Rather than per-
forming a multi-step inference routine between parame-
ter updates, SampleRank embeds parameter updates within
each step of MCMC inference. In this aspect, SampleRank
appears similar to CD. However, to make better use of each
generated sample, the learning objective enforces ranking
constraints between neighboring configurations encoun-
tered during inference. That is, rather than simply optimiz-
ing the score of the true configuration, the learning objec-
tive encourages the proper ranking of pairs of (possibly) in-
correct configurations according to any user-provided loss
function. Not only do these additional constraints improve
the quality of the model, but they also provide computa-
tional efficiency over CD because the corresponding pa-
rameter updates tend to be much more sparse.

We evaluate SampleRank empirically on four datasets cov-
ering three diverse structured prediction domains and find
that SampleRank is both faster and more accurate than
other approximate and exact learning algorithms.

2. Background
Factor graphs are graphical representations for exponen-
tial family probability distributions that decompose into a
product of log-linear factors. They are a powerful model-
ing tool because they provide an intuitive framework for
expressing random variables and their relationships, and
are flexible enough to capture the complex dependencies
present in many real-world domains. Let X be the do-
main space of the observed variables and Y be the domain
space of the hidden variables. For a particular input obser-
vation x ∈ X , let Y(x) be the function that enumerates
the set of possible configurations for that input. The factor
graph then describes a conditional probability distribution
over Y(x) conditioned on x. The probability of a particular
configuration y ∈ Y(x) is given as:

π(y|x; θ) = Zx(θ)−1
∏
ψr∈Ψ

ψr(yr, x) (1)

where Zx(θ) normalizes the distribution and ψr is a factor
of arity r whose arguments are the observed input values
(x) and the values of r hidden variables yr. Each factor
ψr = exp θ′φ (yr) is a log-linear combination of parame-
ters θ and sufficient statistics φ(yr) (x omitted for brevity).

Factor graphs have been particularly useful in structured
prediction, where the goal is to predict an optimal output
ŷ ∈ Y(x) for a particular input x given fixed parameters θ.

ŷ = argmax
y∈Y(x)

π(y|x; θ) = argmax
y∈Y(x)

θ′φ (y) (2)

For example, in coreference resolution, the input x might

be a collection of noun-phrases from newspaper articles.
An output y would be a predicted clustering where noun-
phrases appearing in the same cluster refer to the same
real-world entity. In many structured prediction problems,
finding ŷ is polynomial time due to the graphical structure;
however, in many real-world tasks such as coreference, the
problem remains NP-hard and must be approximated.

2.1. Parameter estimation

The goal of learning is to find a setting to the parameters
θ that yields high quality predictions for ŷ. This is of-
ten achieved by minimizing a risk function over the train-
ing data. Given a training set D consisting of n instances
{xi ∈ X }n1 with corresponding labels {y?i ∈ Y(xi)}n1 ; a
regularizer R(θ) that penalizes the complexity of the solu-
tion; and a loss function L(D; θ); the process of learning
can be described as minimizing an equation of the form:

θ̂ = argmin
θ∈Rk

R(θ) + L(D; θ) (3)

Most machine learning objectives use a loss that mea-
sures a distance between the ground-truth configurations
and the other configurations: L(D; θ)=L(y?,Y(D)) where
Y(D)=

⋃
x∈D Y(x). Indeed maximum likelihood, percep-

tron and structured support vector machines (SVM) all
have objectives of this form.

2.2. Structured support vector machines

In structured SVM (Taskar et al., 2003; Tsochantaridis
et al., 2004) the goal is to learn a set of parameters that
minimizes structured prediction risk on the training set D.
In particular, we are interested in defining risk in terms of
some domain-specific evaluation metric ω such as F1.

Let ω : Y → R be a training signal that determines
the traditional cost function ∆ for a structured SVM:
∆ : Y × Y → R+ s.t. ∆(yi, yj) 7→ ω(y+) −
ω(y−), where y+ := argmaxy∈{yi,yj} ω(y) and y− :=
argminy∈{yi,yj} ω(y). Let the ground-truth label for an in-
put x be y?x = argmaxy∈Y(x) ω(y).

The empirical risk on the dataset is the expected cost of
making a prediction ŷx when the truth is y?x:

r(D) =
1
n

∑
x∈D

∆(y?x, ŷx) (4)

Structured SVM minimizes a penalized upper bound on the
empirical risk (Tsochantaridis et al., 2004):

θ̂ = argmin
θ∈Rk

θ′θ

C
+

1
n

∑
x∈D

ξsvm(y?x, ŷx) (5)

with one slack variable ξsvm(y?x, ŷx) per instance:

ξsvm(y?x, ŷx)= max
y∈Y(x)

[∆(y?x, y)− θ′φ (y?x) + θ′φ (y)]+
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Where [r]+ = max(0, r) is the hinge loss for r ∈ R. Note
that the evaluation metric ω is incorporated into the objec-
tive function through ∆ as a loss measurement against the
ground-truth configurations only. In the following section,
we present a new family of objective functions that can
specify loss between any configuration pairs resulting in
more efficient algorithms and higher quality models.

3. SampleRank
Informally, the structured SVM objective function mini-
mizes margin violations between the ground-truth config-
uration and the remaining configurations. The intuition be-
hind SampleRank is that these types of ground-truth con-
straints—that exist in SVM and other machine learning
methods—can be deconstructed into atomic constraints be-
tween neighbors on a local search space. We use the term
“atomic” in the sense that (1) the constraint occurs between
the atomic steps of search requiring no inference and (2)
the constraints serve as the basic building blocks for larger
constraints of interest.

For example, consider the type of constraints satisfied by
an SVM under separability. Let y ∈ Y(x) be an ar-
bitrary configuration such that ω(y) < ω(y?x). Assum-
ing separability, structured SVM satisfies the constraint
θ′φ (y?x) − θ′φ (y) ≥ ω(y?x) − ω(y). Now let us assume
there exists a path y(0), y(1), . . . , y(p) on a local search
space from y=y(0) to y?x=y(p) of length p such that the
path is monotonic in ω: ω(y(i)) < ω(y(i+1)). Assume that
we are able to satisfy the local constraints along the path:
{θ′φ

(
y(i)

)
−θ′φ

(
y(i−1)

)
≥ ω(y(i))−ω(y(i−1))}p1. Then,

we also satisfy the SVM constraint: θ′φ (y?x) − θ′φ (y) ≥
ω(y?x)− ω(y).

The idea that these ground-truth constraints can be dis-
tributed across a local search space is the underlying intu-
ition for how we can achieve rapid learning with inference-
free gradients. However, our primary goal is not to simply
replicate structured SVM; rather we take a more general
approach based on a new family of objective functions that
can potentially result in higher quality models.

3.1. Pairwise objectives

As stated previously, SVM minimizes margin violations
between each incorrect configuration and the ground-truth.
Consider instead a larger family of objective functions that
minimize margin violations between arbitrary configura-
tion pairs. We can obtain such objectives by replacing
the maximization ξsvm over ground-truth violations in SVM
(Equation 5), with a maximization over configuration pairs
P(x) determined by ω:

ξsr(x) = max
〈yi,yj〉∈P(x)

[
∆(yi, yj)− θ′φ

(
y+

)
+ θ′φ

(
y−

)]
+

(6)

We allow P(x) to be any subset of Y(x) × Y(x) subject to
ω(yi) 6= ω(yj) ∀ 〈yi, yj〉 ∈ P(x). Note that these new ob-
jective functions preserve the structured SVM property of
upper bounding the empirical training risk defined in Equa-
tion 4. We can state this more precisely as follows:

Proposition 1 Let Psvm(x) = {〈y?x, y〉 | y ∈ Y(x) \ y?x}.
If P(x) ⊇ Psvm(x) ∀x ∈ D then the SampleRank objective
upper bounds the empirical risk.

Proof This follows directly from the fact that P(x)
is a superset of Psvm(x). Let `(yi, yj ; θ) :=
[∆(yi, yj)− θ′φ (y+) + θ′φ (y−)]+:

ξsr = max
P(x)

`(yi, yj ; θ)

= max{ max
Psvm(x)

`(yi, yj ; θ), max
P(x)\Psvm(x)

`(yi, yj ; θ)}

= max{ξsvm(y?x, ŷx), max
P(x)\Psvm(x)

`(yi, yj ; θ)}}

≥ ξsvm(y?x, ŷx)

We have that ξsr ≥ ξsvm(y?, ŷ) ≥ ∆(y?, ŷ) ∀x ∈ D ∴
1
n

∑
x∈D ξsr ≥ 1

n

∑
x∈D ∆(y?x, ŷx) 2

In order to derive a stochastic approximation algorithm, we
first reformulate SampleRank’s pairwise objective as a sad-
dle point optimization problem:

min
θ

max
〈yi,yj〉

∑
x∈D

[
∆(yi(x),yj(x))− θ′φ

(
y+
x

)
+ θ′φ

(
y−x

)]
+

(7)

where 〈yi,yj〉=〈〈yi(x1),yj(x1)〉 , · · · , 〈yi(xn), yj(xn)〉〉
is a vector of configuration pairs (one pair per instance)
such that each component 〈yi(xk),yj(xk)〉 ∈ P(xk); that
is, the max is a vector of all the per-instance maxima.

3.2. Optimization

Obtaining the exact solution to Equation 7 is in gen-
eral intractable due to the combinatorial maximization
over each P(x). Fortunately, there are known stochas-
tic approximation procedures (i.e., Robbins-Monro) for
finding saddle point solutions of the form 〈a?, b?〉 =
mina∈A maxb∈B f(a, b) where we only have access to
noisy estimates of the function f(a, b) and its partial
derivatives ζa(a, b) ∼= ∂

∂af(a, b) and ζb(a, b) ∼= ∂
∂bf(a, b)

for a given point (a, b) ∈ A × B. If ΠA : ? −→ A and
ΠB : ? −→ B project their arguments onto the convex sets
A and B respectively, then according to Nemirovski and
Rubinstein (1996), the saddle point solution can be found
by beginning with a feasible point (a0, b0) ∈ A × B and
iterating the following update rules:

at = ΠA [at−1 − ηtζa(a, bt−1)] (8)
bt = ΠB [bt−1 + ηtζb(at−1, b)] (9)
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The final solution (a?, b?) ∈ A × B is given as a? =
1
T

∑T
t=0 at, b

? = 1
T

∑T
t=0 bt. Under relatively mild con-

ditions, the stochastic approximation saddle point (SASP)
algorithm converges. In the next section we introduce the
SampleRank algorithm and its relation to SASP.

3.3. SampleRank algorithm

We first describe a general family of SampleRank algo-
rithms for learning pairwise objectives functions such as
Equation 7, and then identify the specific MCMC vari-
ant of SampleRank that we advocate in this paper. The
general SampleRank method constructs a sequence of con-
figuration pairs (y0, y1), (y2, y3), . . . from a mechanism G

defined over the set P(D) =
⋃
x∈D P(x). For any pair

in the sequence, define y+ = argmaxy∈(yi,yi+1) ω(y) and
y− = argminy∈(yi,yi+1) ω(y); if θ′(φ(y+) − φ(y−)) −
∆(yi, yj) < 0 then the weights are corrected: θt+1 ←
θt + ηt(φ(y+, x) − φ(y−, x)), where ηt is the learning
rate at time t. After T time-steps, SampleRank estimates
the parameters with the average weight vector: 1

T

∑T
t=1 θt.

Under separability, and assuming the random mechanism
can return all configurations with positive probability, then
this general form of SampleRank can be shown to converge
(Rohanimanesh et al., 2009). Furthermore, since updates
are performed in isolation using individual configuration
pairs, SampleRank can be effortlessly parallelized.

The general form of SampleRank alternates between pro-
ducing a configuration pair (yi, yi+1) (resp. maximizing
Equation 7 w.r.t. (yi,yj)) and updating a weight vector θ
(resp. minimizing Equation 7 w.r.t. θ). In order to produce
an algorithm that is both practical and simple for a wide
variety of problems, we advocate a specific variant of Sam-
pleRank in Algorithm 1 that harnesses MCMC. Lines 4-14
(for simplicity only a single epoch is shown) iterate over
the dataset, and then for each instance, an MCMC chain
is run for a predetermined number of steps. Lines 7 gen-
erates a local-search move (resp. a subgradient maximiza-
tion step corresponding to SASP update Equation 9), and
then lines 9-12 perform a minimization with respect to the
parameters (resp. SASP minimization Equation 8). The
conditional in Line 9 is for the hinge-loss and enforces the
property that 〈yi, yj〉 ∈ P(x) =⇒ ω(yi) 6= ω(yj). This
property simply states that the model should be agnostic to
the relative ordering of yi, yj when ω has no preference for
one or the other.

3.4. Implementing SampleRank Efficiently

When implementing SampleRank, we simultaneously ex-
ploit the factorization of the graphical model and the “diff”-
structure of local search to circumvent exhaustive gradient
computations. That is, we can avoid having to fully eval-
uate φ(y+) and φ(y−) to compute ∇̂, and similarly avoid

Algorithm 1 SampleRank with MCMC
1: Inputs:

q : Y → Y : proposer (MCMC transition kernel)
ω : Y → R: performance metric (e.g., F1)
D: the training set

2: Output: 1
T

PT
t=1 θt

3: Initialization: θ0 ← 0
4: for x ∈ D do
5: y0: initial configuration in Y(x)
6: for t = 0, 1, 2, 3, . . .#samples do
7: Attempt an MCMC walkstep (or local search move):

yt+1 ← q(·|yt)
8: Let:

y+ = argmaxy∈{yt,yt+1} ω(y) and
y− = argminy∈{yt,yt+1} ω(y) and

∇̂ = φ(y+)− φ(y−) (use Equation 10)
9: if θ′∇̂ < ω(y+)− ω(y−) and ω(yt) 6= ω(yt+1) then

10: θt+1 = θt + ηt∇̂
11: end if
12: if (¬accept(yt+1, yt, θ)) then yt+1 ← yt

13: end for
14: end for

having to fully evaluate ω(y+) and ω(y−) to compute ∆.
Since y+ and y− differ by just a single step of local search,
they only disagree on a small handful of variable assign-
ments. If we take δ to be the set of variables that were
changed by the atomic local search step, let δ+ be the as-
signment to those variables in y+, δ− be the assignment to
those variables in y−, let N(δ+) be the function that enu-
merates the set of factors neighboring δ+ and let N(δ−) be
similarly defined, then we efficiently compute ∇̂ with:

∇̂ =
∑

ψr∈N(δ+)

φr(yrj )−
∑

ψr∈N(δ−)

φr(yri ) (10)

In addition, by decomposing ω into a product of factors, an
analogous evaluation of ∆(yt+1, yt) is possible.

We can now perform the computations in Algorithm 1 more
efficiently as follows. In Line 8 compute the quantities ∇̂
and ∆(yt+1, yt) = |ω(yt+1) − ω(yt)| using the technique
exemplified in Equation 10. Next compute y+ and y− by
checking the signum of ∆(yt+1, yt): if ∆(yt+1, yt) ≥ 0
set y+ ← yt+1, y

− ← yt, otherwise set y+ ← yt, y
− ←

yt+1. In Line 9, we can substitute ∆(yt+1, yt) for ω(y+)−
ω(y−). Further, taking the inner product θ′∇̂ yields the
log of the model-ratio term in the Metropolis-Hastings ac-
ceptance ratio enabling the same type of efficient sampling
performed by BLOG (Milch et al., 2006).

While Equation 10 applies generally to all graphical mod-
els, we should note that in many real-world problems, ad-
ditional factors cancel for various model-specific structural
reasons, often leading to a full-degree polynomial reduc-
tion in computation. In applications where the graphical
model’s fan-out is bounded, it can be shown that the num-
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ber of factors required to perform a SampleRank update is
linear in the size of the MCMC step and therefore indepen-
dent of the number of variables in the model.

3.5. SampleRank SVM

SampleRank utilizes domain-specific evaluation metrics to
generate an enriched set of constraints for rapid learning.
However, not all structured prediction problems are eval-
uated with such rich metrics. For example, in multi-label
classification problems, the loss metric cannot indicate a
preference between configurations that differ by a choice of
incorrect labels (that is, all classification errors are treated
equally). In such cases, running SampleRank as described
in Algorithm 1 will result in wasted samples if the proposer
generates pairs with no preferences under ω. While this
problem can be alleviated by designing q to better agree
with ω, this is not always straightforward.

Alternatively, we can modify SampleRank to target the
structured SVM objective yielding an algorithm similar to
persistent contrastive divergence. However, instead of al-
ways updating the parameters after each MCMC step, the
parameters are only updated if a margin violation is in-
curred. The gradients between the truth and each config-
uration can be computed incrementally with Equation 10:
as the chain wanders from the truth we accumulate the gra-
dients between neighboring accepted configurations. This
accumulated gradient is used in place of the atomic gradi-
ent in lines 9-11 of the SampleRank algorithm.

4. Sample Complexity
One concern with the SampleRank objective function is
the exponential number of constraints; indeed the objec-
tive can be up to quadratic in the SVM objective which
is already O(|Y(x)|). In this section we show that a high
quality model can be learned from a polynomial number of
samples using analysis from randomized constraint sam-
pling (Farias & Roy, 2004) and sampled convex programs
(Calafiore & Campi, 2005).

The idea behind these bounds is to construct a relaxed op-
timization problem by sampling a manageable set of con-
straints from a full optimization problem with a distribu-
tion ρ. The solution to the full problem is approximated by
solving the relaxed sampled problem. Faris and Roy (2004)
have shown for a problem with k variables, and N sample
constraints, where

N = O

„
1

ε

„
K ln

1

ε
+ ln

1

δ

««
(11)

that any optimal solution to the relaxed problem with a
probability at least (1 − δ) violates a set of constraints V

with measure ρ(V) ≤ ε, where ρ(·) is a probability distri-

bution over the constraint space from which i.i.d. sample
constraints are generated.

SampleRank can be described as the following SCP:{
min θT θ
s.t. ∆(y+, y−)+θ′ (φ(y−, x)−φ(y+, x))≤0,∀Pρ(D)

Where Pρ(D) is a set of constraints derived by sampling
configuration pairs from P(D) with distribution ρ. Taking
K = |θ| reveals that a good quality model can be learned
from a polynomial number of samples.

5. Experiments
We evaluate SampleRank parameter estimation on three
structurally diverse models for three important real-world
problems: coreference resolution, multi-label classifica-
tion, and named entity recognition. First, we compare
SampleRank with other MCMC based learning algorithms
on an exponentially large model of coreference. Next, we
compare to a wider range of recent approximate algorithms
on a more tractable pairwise model of multi-label classifi-
cation. Finally, we compare SampleRank to exact methods
for linear-chain models of named entity recognition.

5.1. Intractable Models of Coreference

In this section we evaluate SampleRank’s performance on
graphical models for which traditional exact machine learn-
ing methods are intractable. In particular, we examine set-
wise models (Culotta et al., 2007) for the notoriously dif-
ficult task of noun-phrase coreference resolution, and find
that SampleRank achieves substantially better held-out F1
accuracy than contrastive divergence.

Noun-phrase coreference is a text extraction task where
noun-phrases (called mentions) are clustered into sets that
all refer to the same real-world entity. For example, the
process may cluster “Clinton”, “Secretary of State Clinton”
and “she” together because they all refer to the real-world
entity “Hillary Rodham Clinton”.

Coreference Model and Representation
Coreference can be modeled with a factor graph as follows
(Culotta et al., 2007): for each pair of mentions there is
a binary variable indicating whether or not they are in the
same cluster (and a factor connecting the two mentions to
this decision variable). For each set of mentions, there is
also a binary variable indicating whether or not all men-
tions in that cluster are coreferent (and a factor connecting
the the set to this decision variable). There are an expo-
nential number of binary decision variables (one for each
cluster) making it impossible to fully instantiate the model.
Fortunately, when using MCMC, only a polynomial num-
ber of variables need to be instantiated at a given time.
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Each mention has a set of properties, including the actual
text, the lexical head, the entity type (person, organization,
location, geo-political etc.), mention type (proper noun,
common noun, or pronoun), sentence number, and sentence
position. The pairwise factors use these properties when
comparing two mentions (for example, the two mentions
are string identical). The setwise factors can compute ag-
gregations over the clusters (for example, the average pair-
wise TFIDF distance in this cluster is greater than 0.5).

SampleRank for Coreference
Recall SampleRank implementations require a local search
procedure and a training signal ω. For local search we use
Metropolis-Hastings with the following proposal distribu-
tion: for a particular document, uniformly sample a men-
tion, and then uniformly sample an entity. If the mention is
already a member of that entity, then the mention becomes
a singleton (a new entity is created), otherwise the men-
tion is moved to the sampled entity. An advantage of this
proposal distribution is that it automatically preserves the
transitivity constraints in the coreference domain.

We define the training signal ω to be the pairwise accuracy:
(true positives+true negatives)/total. This metric is highly
correlated with F1, while also being well behaved with re-
spect to the local search space: the proposer can always
make a non-decreasing proposal towards the ground-truth.

Coreference Learning Systems
We train our entity-wise model of coreference using the
following approaches: SampleRank with unit step-size up-
dates, SampleRank with MIRA (Crammer et al., 2006)
updates, SampleRank-SVM (from Section 3.5) with 0-1
loss, persistent contrastive divergence (PCD), contrastive
divergence-1 which wanders for just a single walk-step
(CD1), and an analogous variant of SampleRank-SVM-1
that also wanders just a single step from the ground truth.
All algorithms are evaluated using a common inference
procedure: Metropolis-Hastings with the same proposer.
For each algorithm, we make four loops over the train-
ing data taking four-thousand walk-steps per training doc-
ument per loop, for a total of 2,336,000 walk-steps. Each
document is re-initialized to the ground-truth configuration
before each round. We evaluate our approach by computing
the average B-Cubed F1 score (Bagga & Baldwin, 1998) of
the held-out test documents; these MAP configurations are
found by taking eight-thousand walk-steps initialized to the
singleton configuration (every mention is in its own entity).

Coreference Results
We run our experiments on the ACE 2004 coreference
dataset which contains a total of 443 newswire articles
with noun-phrases labeled for coreference (most docu-
ments contains 40-100 noun-phrase mentions, but the full
range is from ten to over two-hundred mentions). We per-
form three-fold cross-validation on this dataset for each

system and average the results in Table 1.

Method B-cubed F1 Time (s)
SampleRank (MIRA) 80.04 3115
SampleRank 79.23 3064
SampleRank-SVM 73.89 3399
persistent contrastive divergence 73.27 11078
contrastive divergence-1 74.24 3326
SampleRank-SVM-1 74.84 2988

Table 1. A comparison of SampleRank with other stochastic ap-
proximation learning algorithms on an entity-wise model of coref-
erence resolution.

Both SampleRank systems improve performance over the
remaining algorithms (PCD, CD1, SampleRank-SVM, and
SampleRank-SVM-1) by statistically significant amounts
(pairwise t-test, p < 0.01). The difference between MIRA
and unit step-size updates are not quite significant, but
indicate a possible trend. SampleRank-SVM-1, the mar-
gin analog to CD1 slightly outperforms CD1, but not by
a significant amount. The running times for the persis-
tent algorithms that compute gradients against the ground-
truth (SampleRank-SVM and PCD) require more running
time because the gradients become increasingly dense as
the chain wanders from the ground-truth. Empirically,
we find that the SampleRank gradients range from 100-
300 active features while the ground-truth gradients from
SampleRank-SVM and PCD contain ten to one-hundred
times more active features.

It is also noteworthy that SampleRank outperforms both
SampleRank-SVM and SampleRank-SVM-1 because this
indicates that the pairwise constraints between partially-
correct configurations may be quite important for general-
ization to held-out data. We hypothesize that the pairwise
constraints provided by the accuracy signal enables Sam-
pleRank to learn from additional “positive” substructures
present in the data. In contrast, algorithms with ground-
truth gradients only have one “positive” learning example
per document (only 196 occur in our ACE training splits).

5.2. Multi-label Classification

Multi-label classification has become the de facto task for
comparing efficient approximate learning and inference al-
gorithms (Shalev-Shwartz et al., 2007; Finley & Joachims,
2008; Meshi et al., 2010). Similar to (Finley & Joachims,
2008), we model the problem using a fully connected pair-
wise Markov random field (MRF) in which there are ver-
tices V = {yi}Ni=1 for each of the N possible labels and
edges E = {(yi, yj)}∀i,j:i<j . Each yi ∈ {0, 1} is a
Bernoulli random variable where yi = 1 indicates that the
label i is “on” for a given input x ∈ Rp. Our feature func-
tions consist of φi(yi, x) and φij(yi, yj) with associated
parameters θi ∈ R2p and θij ∈ R4 respectively. We use a
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Method Scene (6 labels) Yeast (14 labels)
PCD 9.86± .20 26.79± .49
Pegasos 9.57± .10 21.06± .19
SampleRank 9.71± .14 21.48± .13
SampleRank-SVM 9.49± .15 20.58± .35

Table 2. Labeling error rates of various algorithms on multi-label
classification data sets averaged over 10 random runs. Results in
bold indicate significant error reduction (p = 0.05).

separate set of parameters for each label yi and label pair
(yi, yj). We define ω to be the negative Hamming loss, and
our local search procedure for SampleRank to be a Gibbs
sampler.

We compare SampleRank and SampleRank-SVM against
persistent contrastive divergence (PCD) and the Pegasos al-
gorithm (Shalev-Shwartz et al., 2007) which uses a linear-
programming (LP) solver as a subroutine to perform loss-
augmented inference. All the algorithms use online learn-
ing in which we perform updates with respect to a single
example sampled at random from the entire data set. The
results are shown in Table 2.

On multi-label classification, the SampleRank-SVM al-
gorithm outperforms all other algorithms, including pair-
wise SampleRank. As discussed previously, the SampleR-
ank algorithm wastes learning opportunities when the pro-
poser generates configuration pairs for which ω does not
yield a preference. This occurs in multi-class classifica-
tion when the Gibbs-sampler proposes an incorrect value
for a label that is already assigned another incorrect value.
SampleRank-SVM instead compares both incorrect values
to the truth. These results suggest that a hybrid algorithm
where both local and ground-truth constraints are enforced
may more generally produce high quality results for a wider
range of proposal distributions and loss functions.

5.3. Named EnitityRecognition

In this section we evaluate SampleRank on the task of
named entity recognition (NER) in order to provide a com-
parison with exact machine learning methods on an impor-
tant real-world problem. NER is the task of labeling tokens
in sentences with labels indicative of entity types. The tok-
enized sentence is the observed input x1, x2, . . . , xn and a
predicted labeling is the output y1, y2, . . . , yn.

NER belongs to a larger family of sequence labeling prob-
lems and is naturally solved with a linear chain model. In
these models, the words x are vector variables with prop-
erties extracted from each word: the word itself, lowercase
word, is word a capital, is word in a sentence that is all
lowercase, first word of sentence. The labels y are discrete
variables with domain: B-PER, I-PER, B-LOC, I-LOC, B-
MISC, I-MISC, O. We use the following factors in our lin-

ear chain model: xi× yi, yi−1× yi, yi−1× yi×xi. Where
× is the outer product of the variables.

We run SampleRank in a Gibbs sampler using MIRA
updates on a Hamming accuracy evaluation signal (ω).
We compare SampleRank to several variations of exact
structured SVM and exact maximum likelihood with L2
regularization (optimized with limited-memory BFGS) on
this linear-chain model. Structured SVM is trained us-
ing the SVMhmm extension to the SVMlight software pack-
age (based on the work (Tsochantaridis et al., 2004)). We
use the the recommended default parameters (convergence
threshold ε = 0.5, loss function ` = Hamming loss), but
also tested several different settings to the regularization
parameter c (five different orders of magnitude). Maxi-
mum likelihood and SampleRank are trained with our own
software. After training each algorithm on the CoNLL-
2003 training set (14,987 sentences and 203,621 words),
we evaluate the algorithms with exact Viterbi inference on
the two CoNLL test sets (Test-A has 3466 sentences and
51362 tokens; Test-B has 3684 sentences and 46,435 to-
kens). The results are displayed in Table 3.

We are somewhat surprised to see that SampleRank is able
to compete with exact methods on both evaluation sets:
SampleRank provides similar performance to exact SVM
after a single epoch and executes in the same amount of
time (83 seconds for SampleRank and 90 for SVM), and
outperforms all methods after ten epochs. We hypothesize
that the performance boost is due to the additional pairwise
constraints; however, further analysis is necessary to con-
firm this assertion.

Method Test-A F1 Test-B F1 Time (s)
SR (10 epochs) 0.913 0.851 663
SR (1 epoch) 0.888 0.825 82
MaxLike-L2 0.896 0.832 15,890
SVM (c=0.1,1,10) 0.886 0.828 90
SVM (c=1/|D|) 0.637 0.623 54
SVM (c=10/|D|) 0.798 0.759 75

Table 3. SampleRank and exact ML algorithms on CoNLL NER

6. Related Work
SampleRank belongs to a family of stochastic approxima-
tion (Robbins-Monro) learning algorithms. Other exam-
ples in ML are stochastic gradient (Bertsekas & Tsitsik-
lis, 1997; Shalev-Shwartz et al., 2007), and incremental
gradient (Bertsekas & Tsitsiklis, 1997) that approximate
full gradients over datasets with randomly selected subsets.
However, these techniques only address scalability to large
numbers of training examples because inference remains
intractable on each example.

Contrastive divergence and persistent contrastive diver-
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gence are stochastic approximation algorithms that—like
SampleRank—exploit MCMC. However, there are several
key distinctions. First, the objective functions differ: CD
and PCD approximate likelihood while SampleRank ap-
proximates a pairwise large-margin loss. Algorithmically,
CD and PCD compute gradients against the ground-truth,
while SampleRank uses the evaluation metric to compute
gradients between consecutive MCMC states

There is also an interesting connection between SampleR-
ank and temporal difference (TD) methods in reinforce-
ment learning (RL). In RL applications, one often defines
a reward signal over the state space and uses TD method
because learning exclusively from goal states is a slow pro-
cess (Sutton & Barto, 1998). Indeed, this is analogous to
SampleRank’s exploitation of the evaluation metric, which
serves as a richer signal than the ground-truth (goal) con-
figuration by providing intermediate rewards.

7. Conclusion
In this paper we presented the SampleRank algorithm for
estimating parameters in complex graphical models on do-
mains with rich evaluation metrics (such as coreference res-
olution). We identified a new family of loss-augmented ob-
jective functions that exploit evaluation metrics to compute
efficient gradients between configuration-pairs. We empiri-
cally evaluated SampleRank on several models across mul-
tiple problem domains and found it outperforms current ap-
proaches in terms of both speed and accuracy.
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